차 례

Ι.	서론 ····································
	1. 연구배경 1
	2. 연구목적
Π.	연구방법6
	1. 인듐 및 난용성 인듐의 유통
	2. 인듐 및 난용성 인듐 취급사업장
	3. 인듐 및 난용성 인듐의 측정·분석방법 개발 ······ 12
Ш.	연구결과 19
	1. 인듐 및 난용성 인듐 유통19
	2. 인듐 및 난용성 인듐 취급 작업공정21
	3. 인듐 및 인듐화합물의 측정·분석방법 ·······51
IV.	결론 및 고찰63
참.	고문헌66
o) 3	등 및 그 하한묵의 작업화경측정 및 부선방법70

표 차 례

<丑	3-1>	인듐의 검출한계 및 정량한계5	4
<丑	3-2>	인듐 표준용액 시료의 분석결과(ICP)5	3
<丑	3-3>	ITO 분말시료의 분석결과(ICP)5	7
<丑	3-4>	인듐 표준용액 시료의 분석결과(ICP/MS)5	3
<丑	3-5>	ITO 분말시료의 분석결과(ICP/MS)5	9
<丑	3-6>	ICP 분석방법에서의 회수율62	1
<丑	3-7>	ICP/MS 분석방법에서의 회수율62	2

그림차례

[그림 1-1] 인듐 및 인듐화합물의 용도별 비중3
[그림 2-1] 에너지 빔(E-beam)을 이용한 ITO 증착10
[그림 2-2] Sputter 공법을 이용한 ITO 증착(수직 방법) ······10
[그림 2-3] Sputter 공법을 이용한 ITO 증착(수평 방법)1
[그림 2-4] PET 필름에 sputter 공법을 이용한 ITO 증착(수평형) ······· 11
[그림 2-5] 흑연블럭 산 분해장치15
[그림 2-6] ITO 표준시료(분말)의 용해실험 ······15
[그림 3-1] 인듐 및 인듐관련 제품의 국내유통 현황20
[그림 3-2] 인듐제련 공정도24
[그림 3-3] 산화인듐 및 ITO target 제조 공정도28
[그림 3-4] Thin film transistor 제조 공정도29
[그림 3-5] TFT 제조공정의 pattern 공정도32
[그림 3-6] Color filter의 구조33
[그림 3-7] Color filter 제조 공정도33
[그림 3-8] Black matrix(Pattern A) 단위 공정도34
[그림 3-9] Color filter(Pattern B) 단위 공정도34
[그림 3-10] ITO(Pattern A) 단위 공정도35
[그림 3-11] Cell 제조 공정도 ···································
[그림 3-12] Module 제조 공정도 ···································
[그림 3-13] LED 제조 공정도 ···································

[그림 3-14	4] 전도성필름 제조 공정도	42
[그림 3-15	5] 플라즈마 표시패널 제조 공정도	44
[그림 3-16	6] OLED 제조 공정도	46
[그림 3-17	7] 인듐 재생 공정도(습식공정)	48
[그림 3-18	3] 인듐 재생 공정도(건식공정)	50