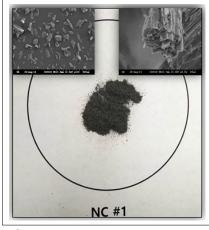
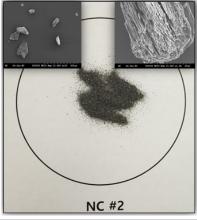
침상코크스 제조공정 발생 분진의 물리적위험성 시험·평가 (1/2)

🧾 침상코크스란?

♣ 마이크로결정구조로부터 높은 수준의 흑연(graphite)을 갖는 코크스의 특별한


형태로 뛰어난 흑연화성, 열팽창특성, 전기전도성 및 기계적 강도를 가지고 있어서 가혹한 제강조업 조건 에서 요구되는 고품위 흑연전극 제조에 필수적인 원료 이며, 최근에는 코크스로의 고온건류과정에서 발생하는 콜타르를 이용하여 제조하기도 함


🧾 침상코크스 제조공정 및 사용분야

- ◆ 석탄을 출발물질로 하는 침상코크스는 석탄화학공정의 코크스로에서 이루어지는 석탄의 고온건류 과정에서 발생하는 타르와 석탄건류가스(COG) 중에서 티켄터를 이용하여 타르로부터 콜타르를 제조 한 후,
 - 제조된 콜타르를 증류 및 추출 등의 공정을 거쳐서 불용성퀴놀린 등의 불순물을 제거한 후에 코킹(coking)과 하소(calcination) 공정을 이용하여 최종 제품화 시킴
- 제조된 침상코크스는 바늘모양의 고탄소 덩어리로 제강용 전극봉 및 음극재 이외에 태양전지, 자동차배터리의 슈퍼캐패시터 등 첨단에너지와 전자산업에 사용되는 고부가가치 탄소제품의 주요 중간소재로 사용됨.

🔜 평가대상 물질의 외관 및 특성

♣ 침상코크스 제조 공정 중 각기 다른 공정에서 발생한 분진 3종.

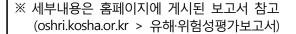
- ✔ 내부에 전형적인 침상코크스의 특징인 주름형태의 흐름구조와 미세공극이 있으며,
 건식 입도분석 결과, (50 ~ 150) μm의 50 % 누적 체적평균 입경을 나타냄
- ※ 세부내용은 홈페이지에 게시된 보고서 참고 (oshri.kosha.or.kr > 유해·위험성평가보고서)

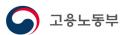
고용노동부 ^{산업재에에방} 안전보건공단

침상코크스 제조공정 발생 분진의 물리적위험성 시험·평가 (2/2)

🧾 침상코크스 분진의 물리적위험성 평가 결과

◆ 열적 안정성 평가결과 : 불활성 분위기에서는 최대 1000 ℃까지 열적으로 안정하지만, 공기분위기에서는 약 650 ℃를 전후로 산화반응에 의한 분해가 발생


분위기	항목	NC #1	NC #2	NC #3
Air	온도범위 [℃]	593 ~ 872	563 ~ 870	560 ~ 841
	질량감소율 [%]	-98.6	-99.2	-99.6
	결과	발열	발열	발열
N ₂	온도범위 [℃]	30 ~ 1000	30 ~ 1000	30 ~ 1000
	질량감소율 [%]	0	0	0
	결과	변화 없음	변화 없음	변화 없음


- ❖ 퇴적분진(dust layer)의 화재위험성 평가결과
 - √ VDI CODE 2663에 의한 연소거동 평가에서 나화(naked flame) 및 1000 °C의 열선에 의한 착화가 되지 않는 "1" 등급으로 분류됨
 - √ VDI CODE 2663에 의한 퇴적분진 최소발화온도 평가에서 최소 약 460 °C에서 모든 시료가 훈연이나 급격한 온도상승 등의 발화현상이 발생되지 않음
- ♣ 부유분진(dust cloud)의 분진폭발 위험성 평가결과

시험항목	약어	단위	NC #1	NC #2	NC #3
최대폭발압력	P _{max}	kPa	609 @ 500 g/m³	560 @ 750 g/m³	570 @ 750 g/m³
최대폭발압력 상승속도	(dP/dt) _{max}	kPa/s	16574 @ 500 g/m³	7800 @ 750 g/m³	8000 @ 250 g/m³
분진폭발지수	Kst	m kPa/s	4499	2100	2200
폭발등급	-		St1	St1	St1
폭발하한농도	LEL_ _{dust}	g/m³	측정불가	측정불가	측정불가

🧾 침상코크스 제조공정 발생 분진의 물리적위험성

- 출 불활성 분위기에서는 1000 ℃까지 안정하지만 공기분위기에서는 650 ℃를 초과하면서 산화반응에 의한 분해로 인한 가연성 가스의 발생 가능성이 있음
- ◆ 퇴적된 형태의 침상코코스 분진은 나화(naked flame) 및 고온(1000 ℃) 열원에 접촉하여도 착화되거나 화염이 전파되는 특성을 보이지 않음
- ◆ 부유된 침상코크스 분진은 충분한 에너지가 주어지는 경우에 최소 560 kPa의 폭발 압력을 동반하며 폭발등급 "St1"에 해당하는 분진폭발의 위험성이 있음

