# 회분식 반응기 사고사례 및 예방대책

2021. 4.

안전보건공단





# 순 서

- ☑ 반응기 종류 및 특성
- ☑ 회분식 반응기 사고사례

<u>회분식</u> 반응기 안전대책

☑ 회분식 반응기 점검 체크리스트



# 반응기 종류 및 특성



### 1. 반응기의 종류



### ■ 연속식 반응기(Continuous Reactor)□

반응물 A, 반응물 B 등을 연속적으로 투입하면서 제품 C,D 등을 생산하는 반응기 (대부분의 석유화학공장의 석유화학 제품 등 다량 생산 방식)

### 반회분식 반응기(semi-Batch Reactor)

반응물 A는 미리 투입한 후 교반·가열하면서, 반응물 B 등을 투입하여 제품 C,D 등을 생산하는 반응기(의약 등 고부가가치의 다양한 제품을 소량 생산 방식)

### 1. 반응기의 종류

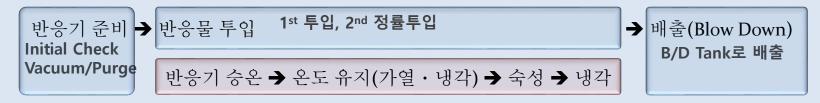


회분식 받웅기(Batch Reactor)

반응물 A, 반응물 B 등을 미리 투입 후 일정 시간 교반· 가열 반응을 시킨 후 제품 C,D 등을 생산하는 반응기(대부분의 정밀 화학 등 소규모 다품종 : 의약, 접착제, 도료 등) - 발열반응에 의한 반응폭주 위험 상존

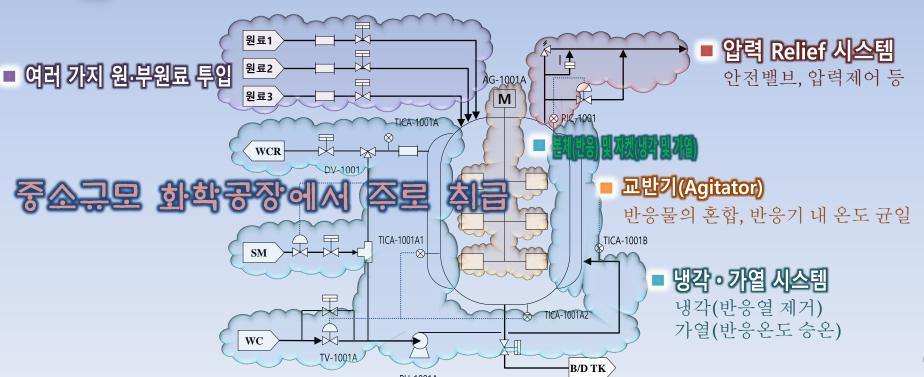
 $A + B \Rightarrow C + D (\triangle H Kcal)$ 

촉매/가열 후 냉각


압력 Relief 시스템 원료1 ■ 여러 가지 원·부원료 투입 원료2 안전밸브, 압력제어 등 AG-1001A M TICA-1001A WCR DV-1001 교반기(Agitator) 반응물의 혼합, 반응기 내 온도 균일 TICA-1001B TICA-1001A1 맹각·가열 시스템 냉각(반응열 제거) TICA-1001A2 가열(반응온도 승온) WC B/D TK

PU-1001A

# 2. 회분식 반응기 구성




### 연속식에 비해 닫위조작이 복잡 • 다양



여러 가지 단위조작(Unit Operation)으로 자동제어가 어렵고, 수동조작이 많음

▶ 오조작 또는 이상반응 발생시 초기 조치 미흡 등으로 반응폭주 등 폭발·화재 위험성 높음





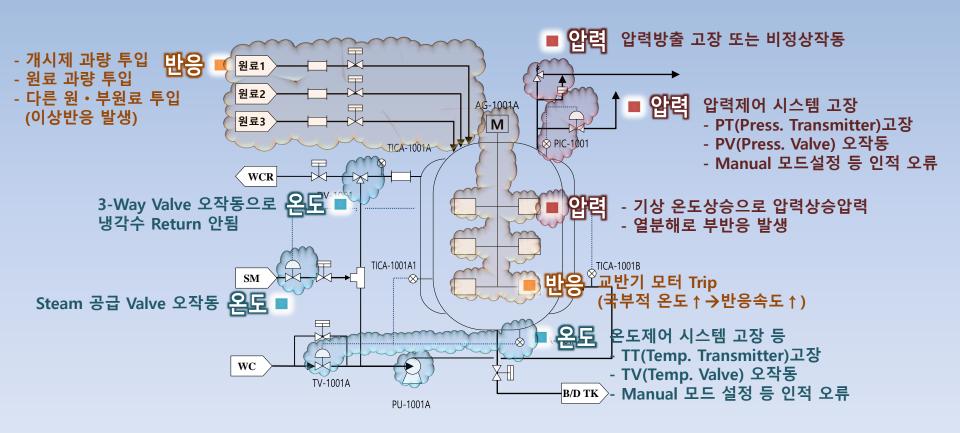
### ■ 회분식 공정 특성

- 공정 운전이 **여러 단계**로 구성
- Batch별 **Start-up**, **Shutdown** 빈번함
- 장치결함 예측이 연속공정보다 어려움
- Grade 변경시 **운전조건 변화**
- 현장 작업자의 **수동운전**이 많음



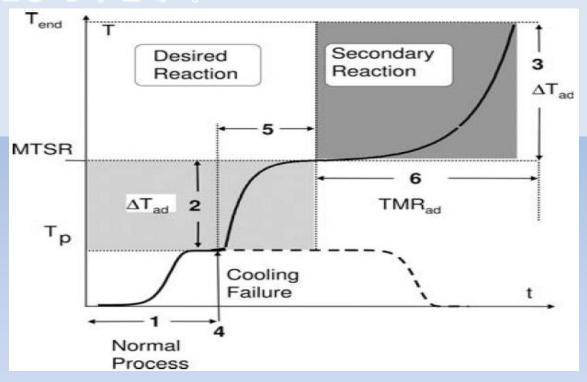
- 인적오류 가능성 높음
- 장치결함 가능성 높음
- 장치결함 예측이 어려움
- 인적피해 가능성 높음
- 인적피해 규모가 큼

### 회분식 공정 주의사항


- <u>화학물질</u> : 원료, 제품, 부산물 등 취급물질에 대한 물질 정보 필요
- <u>장치 설치 및 배치</u>: 배기설비 및 방폭설비 적용 여부 판단
- <u>장치</u>: 빈번한 가동·정지, 다양한 물질취급으로 인해 수명예측이 어려움
- 계장설비 및 제어시스템 : Grade 변경으로 인해 운전조건이 다양함
- <u>운전 및 절차서</u>: Grade 변경에 따른 운전조건 변화로 인적오류 가능성이 높음



### 반응기 압력상승에 따른 파열이 가장 위험


 ➡
 물리적 폭발·파열 후 반응기 내 유해·위험물질 누출로 피해 확산

 주 원인은 ■압력상승, ■온도제어 실패, ■반응제어 실패 등이 있음





회분식 반응 냉각 실패 시 특성



- Tp: 정상 운전 조건에서 운전온도
- MTSR: 합성반응으로 상승할 수 있는 최고 온도 생각수 공급 실패에 의한 미반응물의 급격한 반응에 의함
- △Tad : 단열상승온도
- Tend : 고온으로 2차 열분해반응에 의해 상승할 수 있는 최고 온도
- TMRad : 열분해 반응으로 최고 온도까지 상승하는데 걸리는 시간



폭주반응의 심각도(Severity) 평가 기준 Matrix

| Simplified | Extended     | △ <b>T</b> <sub>ad</sub> ( <b>K</b> ) | Order of magnitude of Q'(kJ/kg) |
|------------|--------------|---------------------------------------|---------------------------------|
|            | Catastrophic | > 400                                 | > 800                           |
| High       | Critical     | 200 ~ 400                             | 400 ~ 800                       |
| Medium     | Medium       | 50 ~ 200                              | 100 ~ 400                       |
| Low        | Negligible   | < 50 and                              | < 100                           |
|            |              | no pressure                           | , . <b></b>                     |

폭주반응의 가능성(Probability) 평가 기준 Matrix

| Simplified | Extended          | TMR <sub>ad</sub> (hr) |
|------------|-------------------|------------------------|
| 1          | Frequent          | ⟨1                     |
| High       | Probable          | 1 ~ 8                  |
| Medium     | Occasional        | 8 ~ 24                 |
|            | Seldom            | 24 ~ 50                |
| Low        | Remote            | 24 ~ 50                |
|            | Almost impossible | > 100                  |



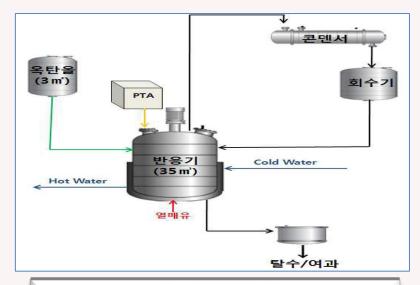
### 사고유형



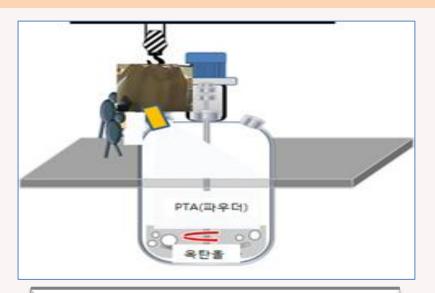
- 인화성액체가 들어있는 반응기에 원료 투입과정에서 정전기에 의한 화재/폭발
  - 반응 완료 후 제품을 이동식용기로 이송과정에서 화재/폭발
- 반응폭주가 발생하였으나 과압을 충분히 해소하지 못하여 폭발
  - 과압을 해소하였으나 방출물을 안전하게 처리하지 못하여 화재/폭발






# 사고사례(1)




### 회분식 반응기에 원료(TPA) 투입과정에서 폭발

재해개요 (16.03.15(화) 16:50분경 경기도 연천군 소재 OOOO(주)에서 가소제 [DOTP(Dioctyl TerePhthalate)] 생산을 위해 반응기에 옥탄올 투입 후 테레프탈산(TPA)을 투입하던 중 정전기에 의해 옥탄올 증기와 TPA 분진이 폭발하여 2명의 작업자가 부상 (치료 중 사망)한 재해임

### [폐혜혡황] 작업자 2명 부상(치료 중 사망)



사고발생공정



사고발생상황

# 사고사례(1)



### 회분식 반응기에 원료(TPA) 투입과정에서 폭발

유증기가 발생한 상태에서 TPA를 투입하여 폭발이 발생 후 외부로 확산



유증기 발생



화염 확산

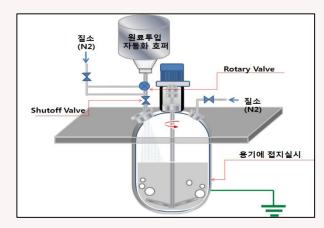


화염 확산

# 사고사례(1)



### 회분식 반응기에 원료(TPA) 투입과정에서 폭발


### 사고발생원인

고온의 옥탄올 증기에 의한 폭발분위기에서 TPA 투입

- 가연물 : 옥탄올 증기 + TPA 분진
  - ※ 옥탄올(인화점 73℃)의 증기압이 낮아 상온에서는 증기의 발생이 적으나 1 배치(Batch) 후 냉각과정 없이 고온의 반응기에 옥탄올을 투입하여 옥탄올 증기가 다량 발생(맨홀을 통해 옥탄올 증기가
    - 반응기 외부로 배출되는 것을 CCTV로 확인됨)
- 산소 : 대기중의 공기
- 점화원 : TPA 분진의 마찰 등에 의해 발생한 정전기

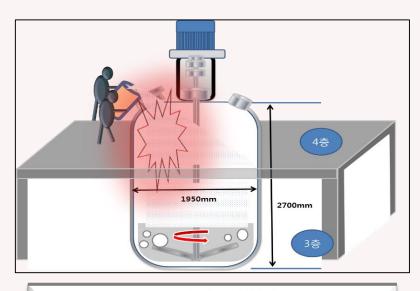


- 작업방법 개선
  - TPA 투입 자동화 설비 설치, 충분히 냉각된 상에서 옥탄올 투입, 불활성분위기에서 원료 투입
- 점화원 제거
  - 비도전성 톤백 사용금지
  - 도전성 바닥, 대전방지용 안전화 착용, 개인용 접지장치 사용 등 인체의 정전기 축적방지 15



# 사고사례(2)




### 회분식 반응기에 원료(록소프로펜산) 투입과정에서 폭발

재해개요

'2016.01.14.(목) 22:40분경 충남 아산시 소재 ㈜OOOO 원료의약품 공장에서

분말상태의 록소프로펜산(Loxoprofen acid)을 아세톤과 정제수의 혼합물이 들어있는 반응기에 투입하는 과정에서 화재·폭발이 발생한 사고

### [피해현황] 작업자 2명 부상







사고반응기

# 사고사례(2)



### 회분식 반응기에 원료(록소프로펜산) 투입과정에서 폭발

**사고발생원인** 아세톤 증기에 의한 폭발분위기에서 록소프로펜산 투입

가연물 : 아세톤 증기 + 록소프로펜산 분진

※ 아세톤(인화점 -20℃)은 증기압이 높아 반응기 내부에서 대기중의 공기와 혼합되어 폭발분위기를

형성함

산소 : 대기중의 공기

점화원 : 인체, 작업복 또는 비닐포장백에 대전된 정전기

# Shutoff Valve 용기에 접지실시

**사고예방대책** 작업방법 개선 및 점화원 제거

- 작업방법 개선
  - 원료 투입 자동화 설비 설치, 불활성분위기에서 원료 투입
- 점화원 제거
  - 비도전성 비닐포장백 사용금지
  - 도전성 바닥, 대전방지용 안전화, 작업복 및 장갑 착용 등 인체의 정전기 축적방지

# 사고사례(3)



### 계면활성제 반응기의 반응열 제어 실패로 인한 폭주반응



**사고개요** '15년 3월 17일 전남 여수시 소재 ○○○케미칼 계면활성제 제조공장 내

반응공정에서 **반응열 제어 실패로 추정되는 폭주반응**으로 반응기 및 주변 생산설비 파손 ※ 폭발은 아민, EO(Ethylene Oxide) 투입 후 60℃까지 승온시키는 과정에서 폭주반응이 발생하여 반응기가 폭발함

### [피해현황] 3명 병원후송, 반응기 완파 등 공장동 소실



공장 외부 전경



폭발로 파괴된 반응기

# 사고사례(3)



### 계면활성제 반응기의 반응열 제어 실패로 인한 폭주반응

사고발생원인 반응기 온도제어 실패 및 압력방출장치 미설치

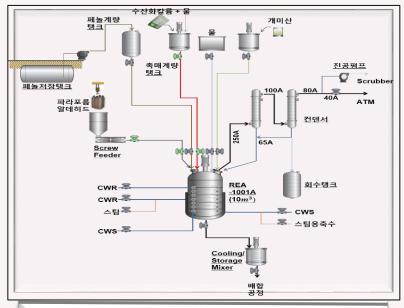
- 반응열 제어 실패에 의한 폭주반응(추정) 발열반응시 <u>반응열 제어 실패</u>로 온도가 상승하여 폭주반응으로 추정
- 폭주반응 가능성이 있는 반응기에 파열판 미설치 폭주반응 발생시에는 폭발압력을 외부로 방출하는 **파열판을 설치하지 않음**

사고예방대책 냉각시스템 확보 및 압력방출장치 설치

- 효과적인 반응열 제어방법 확보 반응열을 효과적으로 제어하기 위한 충분한 냉각시스템을 설치
- 압력방출장치(파열판 등) 설치 폭주반응 위험이 있는 반응기는 일시에 폭발적으로 증가하는 압력을 외부로 방출하기 위한 **압력방출장치(파열판 등)을 설치**



# 사고사례(4)




### PF(페놀폼) 단열제 반응기의 폭주반응

**사고개요** '15년 9월 4일 충북 청주시 소재 ㈜○○○ 내 PF(페놀폼) 단열제 반응기에서 <u>촉매를 일시에 투입하여 발생한 폭주반응으로</u> 반응기 및 주변 설비 파손

※ 페놀과 파라포름알데이드를 중합반응시켜 얻은 폐놀수지로부터 PF를 생산하는 공정으로, 촉매(KOH) 투입밸브 고장으로 중합반응기에 촉매가 일시에 투입되어 급격한 반응폭주가 발생함

### [폐혜혡황] 3명 병원후송, 반응기 완파 등 공장동 소실



사고발생공정



폭발로 파괴된 반응기

# 사고사례(4)



### PF(페놀폼) 단열제 반응기의 폭주반응

**사고발생원인** 촉매 과다 투입 및 파열판 미설치

- 일시에 촉매 과다 투입 촉매 투입밸브 고장으로 미투입된 촉매(KOH, 80 kg)를 일시에 투입하여 반응폭주 발생
- 폭주반응이 가능한 반응기에 파열판 미설치 폭주반응이 가능한 반응기에 배출용량이 94 kg/hr에 불과한 안전밸브 설치

사고예방대책 반응기 정지 인터록 및 파열판 설치

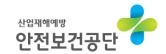
- 투입밸브 오조작 또는 온도상승시 반응기 정지 인터록 설치 투입밸브 오조작 또는 일정온도 이상으로 온도상승시 열원차단, 냉각수 공급, 반응중지제 토입, 긴급바출 등의 반응기를 정지시키는 인터록 설치
- 파열판 설치 반응폭주가 발생할 수 있는 반응기에는 적정크기의 파열판 설치

# 사고사례(5)



### 화장품 원료 제조공정 반응폭주에 의한 폭발사고

사고개요 '19년 8월 충청북도 ○○○○○(주)사업장의 화장품 원료(방부제) 제조 반응기에서 반응폭주에 의해 다량의 인화성 증기가 누출되고, 약 6분 후 미상의 점화원에 의해 폭발이 발생하여 1명 사망(실종), 8명 부상한 사고


### [폐해혡황] 1명 사망(실종), 8명 부상, 사고 사업장 전소(전체 공장동의 약 95%) 등





사고 발생 반응기

# 사고사례(5)



### 화장품 원료 제조공정 반응폭주에 의한 폭발사고

**사고발생원인** 반응폭주 및 비정상 반응 위험성 미파악, 변경관리 미실시

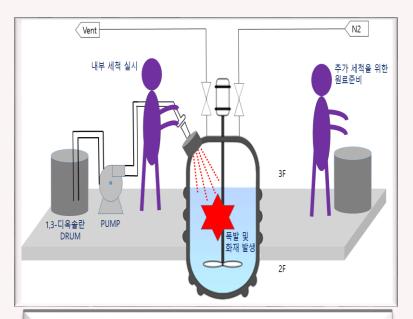
- 반응폭주 및 비정상 반응 위험성 미파악 온도조절 실패 및 미반응물 추가 교반과 같은 반응폭주 발생 위험성평가 미실시
- 반응기 용도 변경에 따른 변경관리 미실시 완제품 변경에 따른 원료 및 운전조건 변경에 따른 변경관리 미실시
- 비정상반응에 대한 안전운전절차서 미작성 운전절차서는 실제 운전작업내용과 불일치, 반응폭주 위험에 대한 자료확보 및 검증 미실시

**사고예방대책** 반응폭주 및 비정상 반응 위험성 파악, 변경관리 실시

- 반응폭주에 대한 위험성평가 실시 반응폭주 및 취급물질에 대한 위험성을 분석평가하고 후 안전대책 수립
- 반응기 용도 변경에 따른 변경관리 절차 준수 원료 및 운전조건이 변경되어 폭주반응 위험성이 존재할 경우 변경요소관리지침 준수
- 비정상 반응을 포함한 안전운전절차서 작성·준수 정상운전, 이상반응시 비상조치, 비상정조 및 위험물질 취급요령 등에 관한 안전운전절차서 작성 및 준수 23

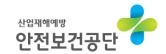
# 사고사례(6)




### 감광제 생산공정 반응기 폭발·화재 사고

사고개요 '19년 12월 ○○○사업장 3층에 설치된 회분식 반응기 내부를 원료(1.3-디옥 솔란)로 세척하던 중 정전기로 추정되는 폭발 및 화재가 발생하여 근로자 부상 및 건물 3층, 4층이 전소된 사고

[폐례현황] 부상 5명(3도 화상 1명, 2도화상 1명, 연기흡입 3명), 공장동 3층 및 4층 전소




사고발생 반응기



세척 공정 계통도

# 사고사례(6)



### 감광제 생산공정 반응기 폭발·화재 사고

사고발생원인 폭발위험분위기 형성, 정전기 관리 실패

- 맨홀 개방으로 인한 폭발위험 분위기 형성
  맨홀 개방 후 공기(산소) 유입된 상태에서 인화성액체를 사용한 세척작업으로 불활성화 미유지
- 정전기 발생스플래쉬 필링과 같이 분무작업을 실시하여 복합적이고 다량의 정전기 발생
- 정전기 관리 실패 반응기 내부가 글라스라이닝으로 코팅되어 세척작업을 통해 축적된 정전기가 미해소되는 구조

### **사고예방대책** 세척방법 개선, 작업 전·후 불활성화, 정전기 제거방안 마련

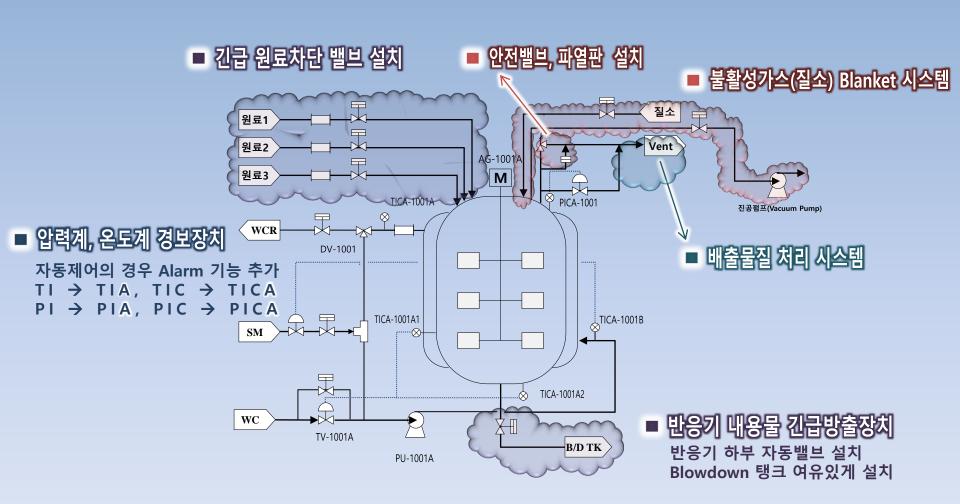
- 반응기 세척방법 개선 및 상시적 불활성화 실시
   맨홀 등 개구부를 열지 않고 세척할 수 있도록 개선(스프레이 볼 사용 등), 상시 불활성화 유지
- 작업 전·후 확실한 불활성화 실시 작업 전·후 불활성화를 통해 반응기 내부를 안전한 상태로 관리
- 정전기 제거 방안 검토
   반응기 내부 대전된 정전기(전하) 제거가 가능하도록 개선
   \*탄탈럼(Ta)를 설치하여 접지(또는 본딩)하는 방법(제품 성질에 따라 사용 주의, 취급물질이 반도전성일 경우에 한함)

# 회분식 반응기 안전대책

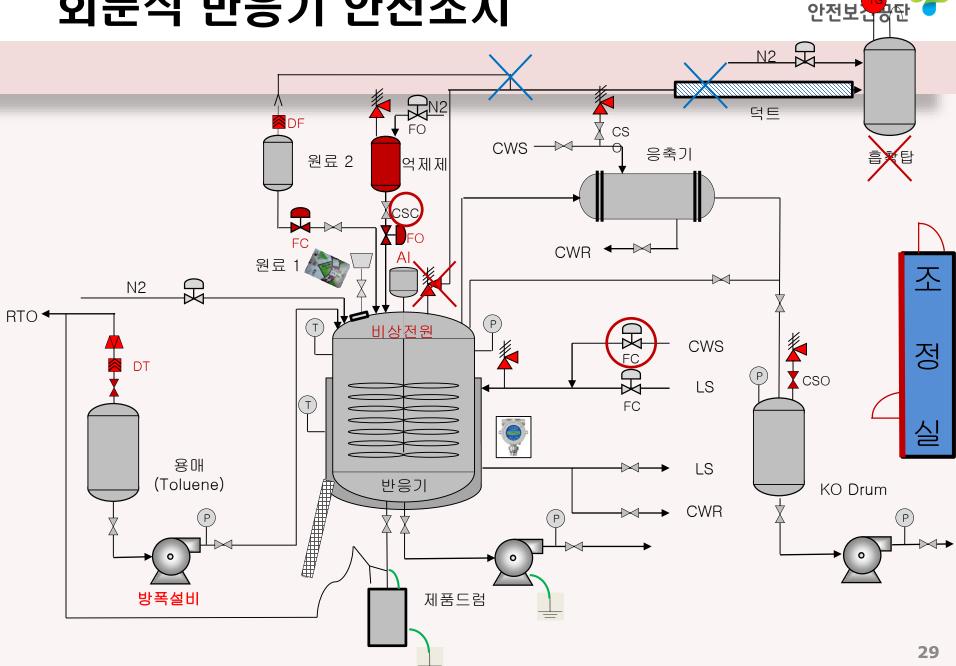




### 회분식 반응기 운전절차(예)




- 1. 반응기 본체 내부 환기(공기)
- 2. 반응기 자켓에 스팀 또는 열매유를 공급하여 승온(90℃)
- 3. 반응기 본체에 펌프를 이용하여 용매(톨루엔, 메탄올 등) 투입
- 4. 1st 원료(가연성분진)를 맨홀을 통해 투입
- 5. 교반(100 rpm)
- 6. 2nd 원료(인화성액체)를 펌프 또는 중력으로 투입
- 7. 발열반응(100°C) (A+B=>C+12kcal/mol)
- 8. 반응기 자켓에 냉각수를 공급하여 반응기 냉각(20℃)
- 9. 반응기 하부의 펌프 또는 중력에 의해 제품 이송
- 10. 제품을 드럼 등에 포장
- 반응폭주 조건 : 냉각 fail, 과원료 ,교반 X
- 2 batch/1일


# 회분식 반응기 안전장치

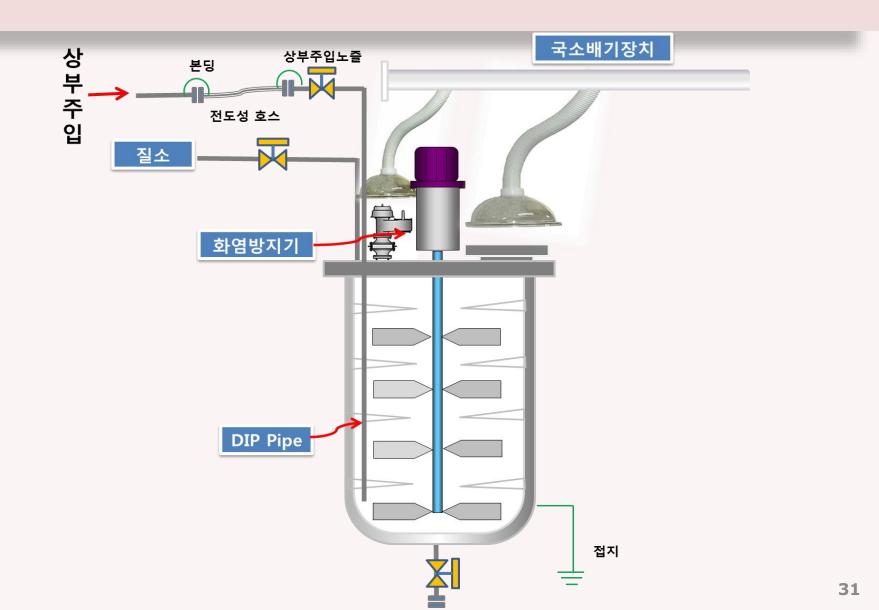


압력방출장치, 원료차단·반응물 방출, 온도·압력 경보장치 필요

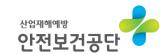


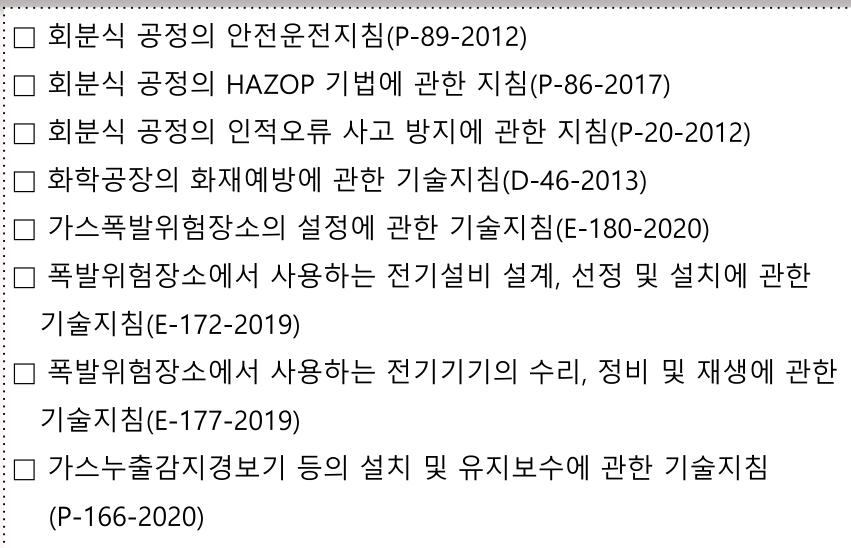
# 회분식 반응기 안전조치




### 교반기/혼합기 안전조치




□ 주입배관이 액면에 잠길 때까지는 유속 1m/s 이하로 유지 □ 연결호스는 전도성 재질 사용(본딩, 접지 클램프 사용) 및 용기 접지 □ 상부주입 방식일 경우 침액파이프(Dip pipe) 사용 □ 내부의 인화성물질의 농도는 폭발하한농도(LEL)의 25% 이하로 유지 (밀폐형 교반기 사용 및 불활성가스 주입·치환) □ 증기회수장치를 설치하여 발생증기 회수 □ 인화성액체를 저장하는 용기에 경고표지 부착 □ 작업장(저장탱크) 출입구 또는 주변에 제전바 설치 □ 저장탱크 상부의 통기배관에 화염방지기 설치 □ 상압 통기배관 및 맨홀 주변에 국소배기장치 설치


# 교반기/혼합기 안전조치





# 회분식 반응기 안전대책 관련 (KOSHA Guide)





\*그외 KOSHA GUIDE는 공단 홈페이지(www.kosha.or.kr)에서 검색 및 다운로드 가능

# 회분식 반응기 점검 체크리스트



# 체크리스트(1)



Guide D-37

D-28

E-118

|        |                                                                                | Q.                | <u></u> 선보건공단 |
|--------|--------------------------------------------------------------------------------|-------------------|---------------|
| 구분     | 점검항목                                                                           | 규정                | 비고            |
| 1. 위험물 |                                                                                |                   |               |
| 1-1.   | 원료, 촉매, 부원료, 용매, 제품은 어떤 위험물인지 확인되었는가? * 인화성액체,인화성가스,부식성물질,급성독성물질,가연성분진 등       | 규칙<br>별표1         |               |
| 1-2.   | 원료, 제품 등의 물질안전보건자료는 확보되고 교육을 실시하였는가?                                           | 법 114조            |               |
| 1-3.   | 원료, 제품 등의 경고표지가 부착되었는가?<br>* 명칭, 그림문자, 신호어, 유해위험문구, 예방조치문구,<br>공급자 정보          | 법 115조            |               |
| 2. 반응기 |                                                                                |                   |               |
| 2-1.   | 반응식, 반응열, 최대단열온도(냉각실패시 최대 온도) 등의 자료 확보여부? * 흡열 반응시 반응폭주 등의 위험은 없음(일부 확인 생략 가능) | Guide<br>P-38, 53 |               |
| 2-2.   | 원료, 제품 등이 최대단열온도에서 이상반응 또는 분해가 되는가?                                            |                   |               |
|        |                                                                                |                   |               |

냉각실패, 원료과투입, 원료오염, 교반기정지 등이 발생할 경우 반응

설계압력은 적정한가?(운전압력 + 0.18 MPa 또는 운전압력 \* 1.1)

분말상태의 원료투입설비는 자동화 되었는가?(맨홀개방 수동투입 여부 확인)

설계온도는 적정한가?(운전온도 + 30℃)

불활성화(질소 퍼지 등) 후 원료를 투입하는가?

2-3.

2-4.

2-5.

3. 절차

3-1.

3-2.

결과는?

# ココストい



| <b>시 그 디그 드 [ Z ]</b> 안전보건공단 ** |                                                      |                      |     |
|---------------------------------|------------------------------------------------------|----------------------|-----|
| 구분                              | 점검항목                                                 | 규정                   | 비고  |
| 4. 과압방지                         |                                                      |                      | 파영판 |
| 4-1.                            | 안전밸브 또는 파열판 설치 여부?<br>* 반응폭주, 독성물질 취급, 점착 가능시 파열판 설치 | 규칙<br>제261조<br>제262조 |     |
| 4.2                             | 아저배비이 파여파이 지려고 서비되 겨오 사이에 아려                         | 그치                   |     |

안신벨므와 파얼판이 식덜도 실시된 경우 사이에 압덕 규식 계 설치 여부? 제263조 \* 반응폭주가 가능한 경우에는 직렬설치 금지, 압력계 "Zero" 확인

₹←파열판

압력지시계 자동경보장치를 설치해야

제264조

제266조

제267조

규칙

규칙

4-2. 4-3. 반응폭주 가능성에 대한 배출용량 산출은 적정한가? 규칙

\* 외부화재 등의 고려한 경우보다 훨씬 커야 함 안전밸브 등의 전단에 차단밸브 설치 여부? 4-4. \* 복수의 안전밸브 등을 제외하고는 불가(CSO형 설치)

4-5.

4-6.

4-7.

안전밸브 등의 방출물은 안전하게 처리하고 있는가?

\* 흡착탑, 흡수탑 등에서 대량 또는 비수용성 위험물 처리가 어려움 자켓에 안전밸브 설치 여부?

규칙 제261조 상압운전으로 안전밸브 등이 설치되지 않은 경우에는 규칙 통기관에 차단밸브 없이 화염방지기 설치 여부? 제269조

# 체크리스트(3)



| 구분      | 점검항목                                                     | 규정          | 비고                                        |  |
|---------|----------------------------------------------------------|-------------|-------------------------------------------|--|
| 5. 계측 등 |                                                          |             | 온도계 압력계 등 설치                              |  |
| 5-1.    | 온도계, 압력계, 액위계 등의 설치여부?                                   | 규칙<br>제273조 |                                           |  |
| 5-2.    | 온도경보장치, 압력경보장치, 교반기 정지 경보장치 등이 설치되어 있는가?                 | 규칙<br>제274조 | 자동경보장치<br>설치해야                            |  |
| 5-3.    | 불활성가스 공급설비가 설치되어 있는가?                                    | 규칙<br>제275조 |                                           |  |
| 5-4.    | 원료 공급배관에 긴급차단밸브가 설치되어 있는가?<br>(Fail Close형)              | 규칙<br>제275조 | 원재료공급의 긴급차단<br>제품 등의 방출불활성<br>가스의 주입·냉각용수 |  |
| 5-5.    | 반응억제제 공급설비가 설치되어 있는가?<br>(반응억제제 충전 여부, 반응기 압력 이상의 압력공급원) | 규칙<br>제275조 | 공급장치 설치해야                                 |  |
|         |                                                          |             | 예비동력비치하고                                  |  |
| 5-6.    | 교반기 등에 비상전원이 연결되어 있는가?<br>(정전 등으로 화재나 폭발이 발생가능한 경우)      | 규칙<br>제276조 |                                           |  |

# 체크리스트(4)

점검항목

구분

6. 정전기



비고

규정

| 6-1. | 반응기 접지 여부?                                 | 규칙<br>제325조 | 도전성 트럼 사용 및 접지실시<br>도전성 Funnel 사용 및 접지실시                         |
|------|--------------------------------------------|-------------|------------------------------------------------------------------|
| 6-2. | 원료 투입설비의 접지 및 본딩 여부?                       | 규칙<br>제325조 | 용기에 접지실시                                                         |
| 6-3. | 원료 투입배관 및 제품 이송배관은 침액(Dipping) 구조로 설치 여부?  | 규칙<br>제325조 |                                                                  |
| 6-4. | 제품을 드럼 등 이동식용기로 이송할 경우 접지 및 본딩<br>여부?      | 규칙<br>제325조 | Nozzle/Dip Pipe Bonded to Tote and Pump Nozzle  Oround  Dip Pipe |
| 6-5. | 제품을 드럼 등 이동식용기로 이송할 경우 발생되는 유<br>증기 제거 여부? | 규칙<br>제232조 | (Ground) Weigh State                                             |
| 6-6. | 원료 투입 및 제품 이송 설비의 도전성재질 여부?                | 규칙<br>제325조 | Pump                                                             |
| 6-7. | 제전복, 제전화, 제전장갑, 도전성 바닥 등 인체의 정전기 제거 여부?    | 규칙<br>제325조 | A STATE                                                          |

# 체크리스트(4)

규정

점검항목

구분

7. 기타



비고

| 7-1. | 반응기 주변을 폭발위험장소로 구분 여부?                                                                | 규칙<br>제230조 |                       |
|------|---------------------------------------------------------------------------------------|-------------|-----------------------|
| 7-2. | 가연성 및 독성가스 감지기 설치 여부? * 경보설정(인화성액체/가스: LEL 25% 이하, 독성물질: 허용농도 이하), 비상전원(밧데리) 연결<br>여부 | 규칙<br>제232조 |                       |
| 7-3. | 반응기의 지지대, 건축물의 기둥 및 보 등의 내화조치<br>여부?                                                  | 규칙<br>제270조 | 내화 기상 1층까지            |
| 7-4. | 조정실의 안전거리(20m 이상) 확보 여부? - 안전거리가 확보되지 않을 경우 방호구조                                      | 규칙<br>제271조 | 인화성증기                 |
| 7-5. | 전기 기계·기구를 방폭형으로 설치여부?                                                                 | 규칙<br>제311조 | 방폭구조의<br>전기기개기구<br>사용 |



# 사고를 통해 안전을 배우지 말라! (Don't Learn Safety by Accident) - 영국 속담 -



